Example 2

Setup(1λ,N)Setup(1^{\lambda},N): This function outputs pp=PC.Setup(1λ,d)pp=PC.Setup(1^{\lambda},d) where if ng=4n_g=4 , ni=32n_i=32 and b=2b=2 then d={dAHP(N,i,j)}i[kAHP]{0},j[sAHP(i)]={8,8,8,8,8,8,8,8,8,4,39,39,39,40,75,36,38,36,36,7,42}d=\{d_{AHP}(N,i,j)\}_{i\in[k_{AHP}]\bigcup\{0\},j\in[s_{AHP}(i)]}=\{8,8,8,8,8,8,8,8,8,4,39,39,39,40,75,36,38,36,36,7,42\}

Run KZG.Setup(1λ,d)KZG.\hspace{1mm}Setup(1^{\lambda},d) as following:

If the computation be done in F\mathbb{F} of order Goldilock prime p=Q2Q+1p=Q^2-Q+1 with Q=2184Q=2184 that is p=4767673p=4767673, a generator of F\mathbb{F} is g=5g=5.

KZG.Setup(1λ,138)=(ck,vk)=({gτi}i=0137,gτ)KZG.Setup(1^{\lambda},138)=(ck,vk)=(\{g\tau^i\}_{i=0}^{137},g\tau) that for secret element τ=119\tau=119 and generator g=5g=5 outputs ck={gτi}i=0137=(5,)ck=\{g\tau^i\}_{i=0}^{137}=(5,) and vk=vk=.

KZG.Setup(1λ,4)=(ck,vk)=({gτi}i=03,gτ)KZG.Setup(1^{\lambda},4)=(ck,vk)=(\{g\tau^i\}_{i=0}^{3},g\tau) that for secret element τ=119\tau=119 and generator g=5g=5 outputs ck={gτi}i=03=(5,)ck=\{g\tau^i\}_{i=0}^{3}=(5,) and vk=vk=.

KZG.Setup(1λ,39)=(ck,vk)=({gτi}i=038,gτ)KZG.Setup(1^{\lambda},39)=(ck,vk)=(\{g\tau^i\}_{i=0}^{38},g\tau) that for secret element τ=119\tau=119 and generator g=5g=5 outputs ck={gτi}i=038=(5,)ck=\{g\tau^i\}_{i=0}^{38}=(5,) and vk=vk=.

KZG.Setup(1λ,40)=(ck,vk)=({gτi}i=039,gτ)KZG.Setup(1^{\lambda},40)=(ck,vk)=(\{g\tau^i\}_{i=0}^{39},g\tau) that for secret element τ=119\tau=119 and generator g=5g=5 outputs ck={gτi}i=039=(5,)ck=\{g\tau^i\}_{i=0}^{39}=(5,) and vk=vk=.

KZG.Setup(1λ,75)=(ck,vk)=({gτi}i=074,gτ)KZG.Setup(1^{\lambda},75)=(ck,vk)=(\{g\tau^i\}_{i=0}^{74},g\tau) that for secret element τ=119\tau=119 and generator g=5g=5 outputs ck={gτi}i=074=(5,)ck=\{g\tau^i\}_{i=0}^{74}=(5,) and vk=vk=.

Last updated