Setup(1λ,N): This function outputs pp=PC.Setup(1λ,d) where if ng=4 , ni=32 and b=2 then d={dAHP(N,i,j)}i∈[kAHP]⋃{0},j∈[sAHP(i)]={8,8,8,8,8,8,8,8,8,4,39,39,39,40,75,36,38,36,36,7,42}
Run KZG.Setup(1λ,d) as following:
If the computation be done in F of order Goldilock prime p=Q2−Q+1 with Q=2184 that is p=4767673, a generator of F is g=5.
KZG.Setup(1λ,138)=(ck,vk)=({gτi}i=0137,gτ) that for secret element τ=119 and generator g=5 outputs ck={gτi}i=0137=(5,) and vk=.
KZG.Setup(1λ,4)=(ck,vk)=({gτi}i=03,gτ) that for secret element τ=119 and generator g=5 outputs ck={gτi}i=03=(5,) and vk=.
KZG.Setup(1λ,39)=(ck,vk)=({gτi}i=038,gτ) that for secret element τ=119 and generator g=5 outputs ck={gτi}i=038=(5,) and vk=.
KZG.Setup(1λ,40)=(ck,vk)=({gτi}i=039,gτ) that for secret element τ=119 and generator g=5 outputs ck={gτi}i=039=(5,) and vk=.
KZG.Setup(1λ,75)=(ck,vk)=({gτi}i=074,gτ) that for secret element τ=119 and generator g=5 outputs ck={gτi}i=074=(5,) and vk=.