PFR Verify
Verify(F,H,K,comPFR,πPFR):
1) The Verifier checks h(γp1)=h(γ0)=a1=ω2 and h(γp2)=h(γ3)=a2=0. Here, the Verifier checks h(1)=42 and h(48)=0.
2) M(β2)−q2(β2)ZK(β2)=0 , that means 36−30×146=36−36≡0(mod181), and F′(β1)−q1(β1)ZK(β1)=0, that means 0−86×0≡0(mod181).
AHP Verify
Verify(F181,H,K,ComAHP,ΠAHP,x=4,y=82) :
Since h3(β3)=h3(5)= and vK(β3)=vK(5)=134, therefore, the left of equation (1) is h3(β3)vK(β3)=160 . Also, since a(β3)=a(5)=, b(β3)=b(5)= and β3g3(β3)+∣K∣σ3=, therefore, the right of the equation (1) is a(β3)−b(β3)(σ3g3(β3)+∣K∣σ3)=160. So, the equation (1) is established.
Since r(α,β2)=α−β2α5−β25=10−80105−805=142, σ3=84, therefore, the left of equation (2) is r(α,β2)σ3=163 and since h2(β2)=h2(80)=42, vH(β2)=vH(80)=72, β2g2(β2)+∣H∣σ2=35, therefore, the right of equation (2) is h2(β2)vH+β2g2(β2)+∣H∣σ2=163. So, equation (2) is established.
Since s(β1)=s(22)=138, r(α,β1)=130, ∑M∈{A,B,C}ηMz^M(β1)=121, z^(β1)=53, σ2=70, therefore, the left of the equation (3) is s(β1)+r(α,β1)(∑M∈{A,B,C}ηMz^M(β1))−σ2z^(β1)=31. Also since h1(β1)=h1(22)=94, vH(β1)=vH(22)=18, g1(β1)=g1(22)=100, σ1=62, therefore the right of the equation (3) is h1(β1)vH(β1)+β1g1(β1)+∣H∣σ1=31. So, the equation (3) is established.
Since z^A(β1)=z^A(22)=140, z^B(β1)=z^B(22)=115, z^C(β1)=z^C(22)=125, therefore, the left of the equation (4) is z^A(β1)z^B(β1)−z^C(β1)=47. Also since h0(β1)=h0(22)=73 and vH(β1)=vH(22)=18, therefore the right of the equation (4) is h0(β1)vH(β1)=47. So the equation (4) is established.
2- The output result in following steps is 1.
2-1- The Verifier chooses random values ηw^, ηz^A, ηz^B, ηz^C, ηh0, ηs, ηg1, ηh1, ηg2, ηh2, ηg3 and ηh3 of F For example, ηw^=1, ηz^A=4, ηz^B=10, ηz^C=8, ηh0=32, ηs=45, ηg1=92, ηh1=11, ηg2=1, ηh2=5, ηg3=25 and ηh3=63.
2-2- The Verifier derives commitment of p(x), Comp, by using polynomial commitment scheme homomorphism.
For example, if polynomial commitment scheme KZG is used, then Comp=ηw^ComAHPX2+ηz^AComAHPX3+ηz^BComAHPX4+ηz^CComAHPX5+ηh0ComAHPX6+ηsComAHPX7+ηg1ComAHPX8+ηh1ComAHPX9+ηg2ComAHPX10+ηh2ComAHPX11+ηg3ComAHPX12+ηh3ComAHPX13=114
2-3- The Verifier chooses random x′∈F and queries p(x′). For example, x′=2.
2-4- The Verifier computes result=PC.Check(vk,Comp,x′,y′=πAHP16,πAHP17).
For example, if polynomial commitment scheme KZG is used, then the following equation checks:
e(Comp−gy′,g)=e(πAHP17,vk−gx′)
where e(Comp−gy′,g)=e(114−2×119,2)=e(57,2)=e(2×119,2)=119e(2,2)=119×3=176 and e(πAHP17,vk−gx′)=e(149,57−2×2)=e(2×165,2×117)=119e(2,2)=119×3=176